Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.

Identifieur interne : 001538 ( Main/Exploration ); précédent : 001537; suivant : 001539

Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.

Auteurs : Nan Zhao [République populaire de Chine] ; Xixiang Yang [Japon] ; Jing Zhang [République populaire de Chine] ; Ling Zhu [République populaire de Chine] ; Yizhong Lv [République populaire de Chine]

Source :

RBID : pubmed:28937637

Abstract

Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The qmax values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.

DOI: 10.3390/ma10101119
PubMed: 28937637
PubMed Central: PMC5666925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.</title>
<author>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhaonan8@mail.sysu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China. zhaonan8@mail.sysu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xixiang" sort="Yang, Xixiang" uniqKey="Yang X" first="Xixiang" last="Yang">Xixiang Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. qiqiang2010@yeah.net.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395</wicri:regionArea>
<orgName type="university">Université de Kyūshū</orgName>
<placeName>
<settlement type="city">Fukuoka</settlement>
<region type="province">Kyūshū</region>
<region type="prefecture">Préfecture de Fukuoka</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. jingzhang@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Ling" sort="Zhu, Ling" uniqKey="Zhu L" first="Ling" last="Zhu">Ling Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhuling@cau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lv, Yizhong" sort="Lv, Yizhong" uniqKey="Lv Y" first="Yizhong" last="Lv">Yizhong Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. lyz@cau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28937637</idno>
<idno type="pmid">28937637</idno>
<idno type="doi">10.3390/ma10101119</idno>
<idno type="pmc">PMC5666925</idno>
<idno type="wicri:Area/Main/Corpus">001161</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001161</idno>
<idno type="wicri:Area/Main/Curation">001161</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001161</idno>
<idno type="wicri:Area/Main/Exploration">001161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.</title>
<author>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhaonan8@mail.sysu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China. zhaonan8@mail.sysu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xixiang" sort="Yang, Xixiang" uniqKey="Yang X" first="Xixiang" last="Yang">Xixiang Yang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. qiqiang2010@yeah.net.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395</wicri:regionArea>
<orgName type="university">Université de Kyūshū</orgName>
<placeName>
<settlement type="city">Fukuoka</settlement>
<region type="province">Kyūshū</region>
<region type="prefecture">Préfecture de Fukuoka</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. jingzhang@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Ling" sort="Zhu, Ling" uniqKey="Zhu L" first="Ling" last="Zhu">Ling Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhuling@cau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lv, Yizhong" sort="Lv, Yizhong" uniqKey="Lv Y" first="Yizhong" last="Lv">Yizhong Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. lyz@cau.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Materials (Basel, Switzerland)</title>
<idno type="ISSN">1996-1944</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra,
<sup>13</sup>
C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The
<i>q
<sub>max</sub>
</i>
values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28937637</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1996-1944</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
<Month>Sep</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Materials (Basel, Switzerland)</Title>
<ISOAbbreviation>Materials (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1119</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ma10101119</ELocationID>
<Abstract>
<AbstractText>Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra,
<sup>13</sup>
C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The
<i>q
<sub>max</sub>
</i>
values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhaonan8@mail.sysu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China. zhaonan8@mail.sysu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xixiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. qiqiang2010@yeah.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. jingzhang@rcees.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. zhuling@cau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Yizhong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. lyz@cau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Materials (Basel)</MedlineTA>
<NlmUniqueID>101555929</NlmUniqueID>
<ISSNLinking>1996-1944</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adsorption mechanism</Keyword>
<Keyword MajorTopicYN="N">biochar</Keyword>
<Keyword MajorTopicYN="N">corn straw</Keyword>
<Keyword MajorTopicYN="N">poplar leaf</Keyword>
<Keyword MajorTopicYN="N">structural characteristics</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28937637</ArticleId>
<ArticleId IdType="pii">ma10101119</ArticleId>
<ArticleId IdType="doi">10.3390/ma10101119</ArticleId>
<ArticleId IdType="pmc">PMC5666925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Total Environ. 1992 Aug 12;123-124:63-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1439745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Sep;61(1):56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Aug 15;39(16):6138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16173574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2009 Apr 1;332(1):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Jun;76(1):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19282020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Feb 15;44(4):1247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20099810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Nov;101(21):8389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20558057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2011 Jan;92(1):223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2011 Jun 15;190(1-3):909-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21550718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Oct;102(19):8877-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2013 Jan 15;244-245:217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23246958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2014 Mar;33(3):508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24288239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Feb;22(3):1868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25212810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2015 Jan 1;502:471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25290589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jan;176:288-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jan;176:210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2016 Mar 15;466:101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26707777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2017 Mar;171:66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28002768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2016 Mar 1;7(3):2427-2436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29997784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
<li>Kyūshū</li>
<li>Préfecture de Fukuoka</li>
</region>
<settlement>
<li>Fukuoka</li>
<li>Jiangmen</li>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Kyūshū</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
</noRegion>
<name sortKey="Lv, Yizhong" sort="Lv, Yizhong" uniqKey="Lv Y" first="Yizhong" last="Lv">Yizhong Lv</name>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
<name sortKey="Zhu, Ling" sort="Zhu, Ling" uniqKey="Zhu L" first="Ling" last="Zhu">Ling Zhu</name>
</country>
<country name="Japon">
<region name="Kyūshū">
<name sortKey="Yang, Xixiang" sort="Yang, Xixiang" uniqKey="Yang X" first="Xixiang" last="Yang">Xixiang Yang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001538 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001538 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28937637
   |texte=   Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28937637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020